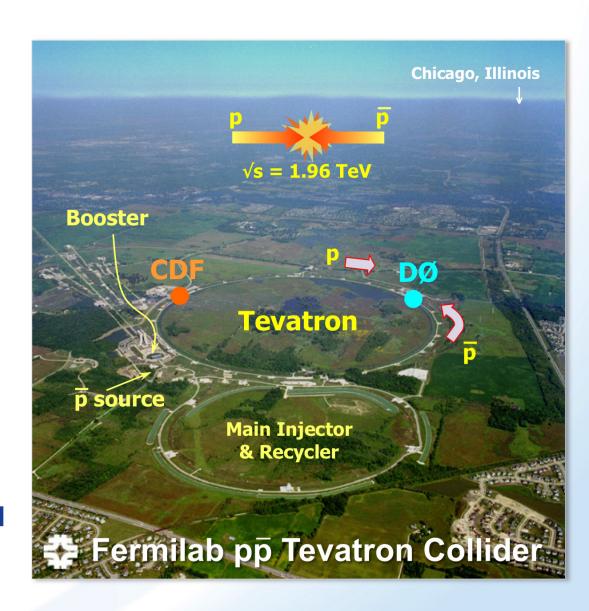
DØ Experiment and BNL

presented by

Abid Patwa (for the DØ BNL Group)

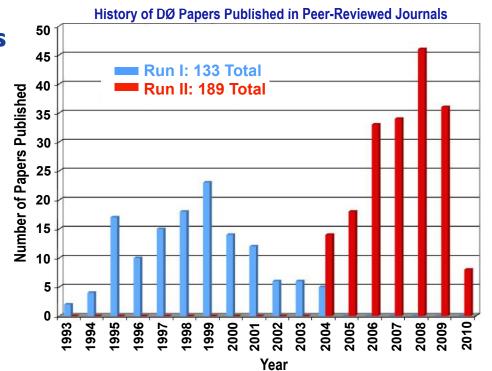
Department of Energy Review May 19-21, 2010

a passion for discovery



Outline

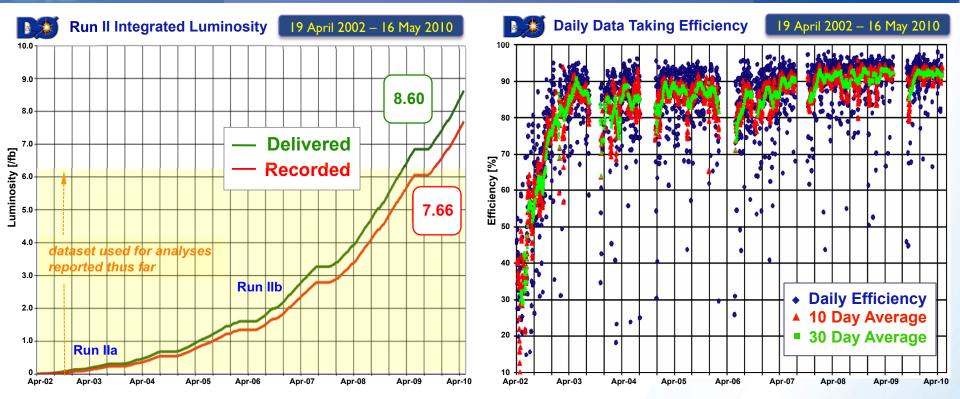
- Overview of Results from DØ Experiment
- BNL-DØ Personnel
- Major BNLContributions
- Present Status and Physics Results
- Closing Summary and Future Plans



DØ Experiment – Results

Run II (2004-present) publications

- 189 publications accepted, additional 10 submitted
- On average, new paper submitted ~ every week during 2008-2010
 - results across all physics areas
 - past year, BNL-DØ group coauthored or reviewed 13 papers


DØ Preliminary or Published Results presented at major conferences — with BNL involvement, in FY09 & FY10

- "Search for the SM Higgs boson in $\tau\tau qq$ final state" 4.9 fb⁻¹
- "Search for SM Higgs in $WH \rightarrow \tau v b \bar{b}$ channel" 4.0 fb⁻¹
- \star "Combined upper limits on MSSM Higgs boson to au au final states" 1-2.2 fb⁻¹
- * "Search for a resonance decaying into WZ boson pairs in $p\bar{p}$ collisions" 4.1 fb⁻¹
- ★ "Combination of DØ top quark mass measurements" 0.1-3.6 fb-1
- * "Dependence of $t\bar{t}$ cross section on p_T of the top quark" 1.0 fb⁻¹

Tevatron and DØ Performance

Tevatron Collider and DØ operating successfully in Run II

- Tevatron delivered $\int \mathcal{L} dt \rightarrow 8.60 \text{ fb}^{-1}$ of data: DØ recorded 7.66 fb⁻¹
- up to 6.1 fb-1 [Run IIa & Run IIb] dataset used in DØ analyses reported thus far

❖ Projections through end-FYII: expect to collect ~II fb⁻¹data

Stable operations at DØ with recent ~92% data taking efficiency

- excellent performance due to dedicated 24/7 effort from shifters & detector experts
 - BNL-DØ expert roles in Preshower and Luminosity Monitor subsystems
 - shift contributions include Captain, Tracking/Preshower, SAM database

BNL-DØ Group

FYI0 BNL-DØ members

- A. Patwa (100%), S. Snyder (10%), T. Gadfort (10%), M. Begel (10%),
 M-A. Pleier (10%), S. Protopopescu (10%), K. Yip (20%, not in core program)
 - I.5 FTE in core program (I.7 FTE total)
 - continue transition to ATLAS while maintaining needed role on DØ
- A. Evdokimov: BNL guest appointment
 - DØ effort shared between FNAL (25%) and BNL (25%)
 - resident at Fermilab

Past Year Service Contributions

- Central and Forward Preshowers (CPS, FPS) hardware and software maintenance A. Evdokimov: CPS and FPS, A. Patwa: FPS
- τ-ID Algorithm Group Co-convener A. Patwa
- Online and Offline Software support S. Snyder
- Shift responsibilities a) A. Patwa & S. Snyder (Captains)
 - b) A. Evdokimov (Central Tracker and Preshowers)
 - C) M-A. Pleier, S. Protopopescu, and K. Yip (Remote SAM database)

BNL-DØ Group (cont.)

Physics

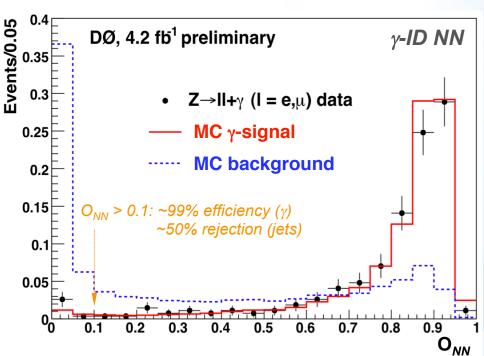
- Search for MSSM Higgs Boson in $h \rightarrow \tau \tau$ channel
 - A. Patwa
 - * presently: Beyond Standard Model (BSM) Higgs group convener
 - oversee searches across $bh \rightarrow bb\bar{b}$, $h \rightarrow \tau\tau$, $bh \rightarrow b\tau\tau$, $VH \rightarrow qqb\bar{b}$, $ZH \rightarrow \tau\tau$ jj, $WH \rightarrow \tau vb\bar{b}$, $H \rightarrow WW \rightarrow \tau v\tau v$, and NMSSM channels
- QCD and Top Cross Section Measurements
 - M. Begel
- Search for New Phenomena: W' and Lepto- and Vector-quark Production
 - T. Gadfort

* Membership in Physics Editorial Boards

- Top Mass
 - S. Protopopescu^(†), M. Pleier^(††), S. Snyder, and A. Patwa
- Top Pair Production in Dilepton and All-jet Channels
 - T. Gadfort^(†††)
- Inclusive Jet and High-p_T Jet Production
 - M. Begel^(†)
- New Phenomena & Low-Mass SM Higgs Searches with Heavy-flavor Jets
 - A. Patwa

(††) EB Chair til August 2008; still member (†††) Joined BNL staff August 2009 (†††) Goldhaber Distinguished Fellow since October 2009

Preshowers

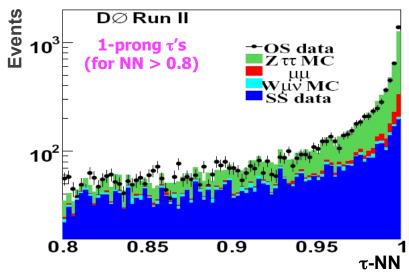


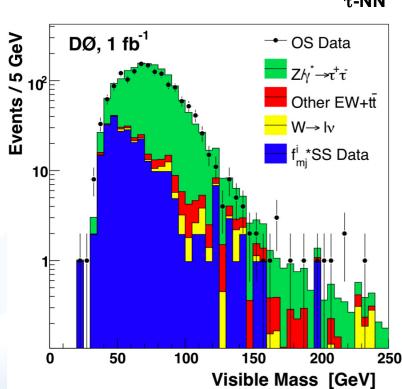
Effort on improving performance of preshowers and inclusion into event selections for physics analyses

- e.g., implement energy-weighted width of CPS in Neural Net (O_{NN}) for e- or γ -ID
 - exploit fact that preshower width narrower for photons than for jets
 - addition of CPS: achieve ~15% improvement in S/B for direct- γ production at high- p_T
- analyses with CPS selections include
 - H → γγ, SUSY di-photon searches, QCD γ + jet measurements...

* FPS

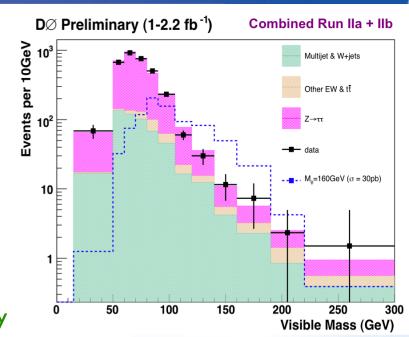
 past year, completed calibration with Run IIb upgraded AFE-II boards, which restored full dynamic range

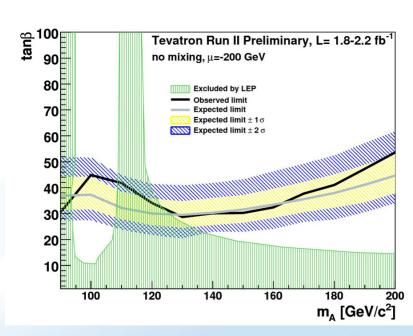

- future plans coordinated by A. Evdokimov include
 - development of e/γ -ID in End-Calorimeter region using FPS
 - improvement of EM resolution at forward rapidities
 - similar inclusion into physics analyses



❖ Published $Z \rightarrow \tau \tau$ cross section

- PRD 71, 072004 (2005): 226 pb⁻¹
 - benchmark study for testing and certifying τ -ID algorithm based on NN
- PLB 670, 292 (2009): I.0 fb⁻¹
- S. Protopopescu, A. Patwa have led τ-ID development and coordination efforts
- $\bullet \sigma(p\bar{p} \rightarrow Z + X) \times Br(Z \rightarrow \tau^+\tau^-)$
 - PRD: $237 \pm 15 \text{ (stat)} \pm 18 \text{ (sys)} \pm 15 \text{ (lum)} \text{ pb}$
 - PLB: 240 ± 8 (stat) ± 12 (sys) ± 15 (lum) pb
 - SM theory (NNLO): 241.6 +3.6 pb
- Methods developed for Z→ττ have been extended to other τ-based physics analyses
- Expertise gained with τ's from DØ propagated to object-ID efforts in ATLAS
 - S. Protopopescu active in ATLAS τ-ID group

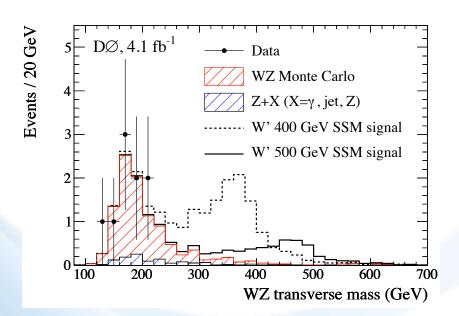


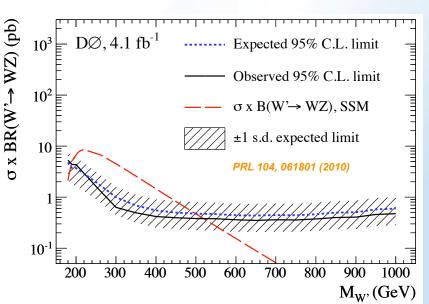


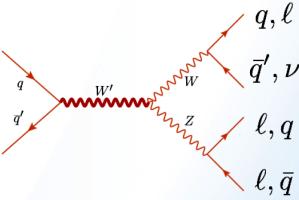
MSSM Higgs: Inclusive ττ Search

- * Result using I.0 fb⁻¹ dataset for $\tau_{\mu}\tau_{h}$, $\tau_{e}\tau_{h}$, and $\tau_{e}\tau_{\mu}$: PRL I01, 071804 (2008)
- ♦ Updated 2.2 fb⁻¹ result considers $\tau_{\mu}\tau_{h}$
 - isolated μ separated from τ_h : opposite-sign
 - τ -ID NN discriminates hadronic τ from jets
- No excess in data across visible mass spectrum
 - exclusion limits in MSSM $(m_A, tan \beta)$ plane
 - Dawson, Kilgore (BNL) contributed to theory
- * New Tevatron (DØ, CDF) combination for ττ search channels
 - with a fraction of final dataset, probing interesting region of $\tan \beta \sim 30 \ [\mathcal{O}(m_{top}/m_b)]$
 - most stringent limits on $tan\beta$
- **❖ In publication mode with 5.3 fb⁻¹ data**
 - A. Patwa to continue with Saclay group on search efforts with larger dataset
 - aim for observation or reach sensitivity of $\tan \beta \sim 20$ for low m_{Δ}

New Phenomena Search: Heavy Bosons



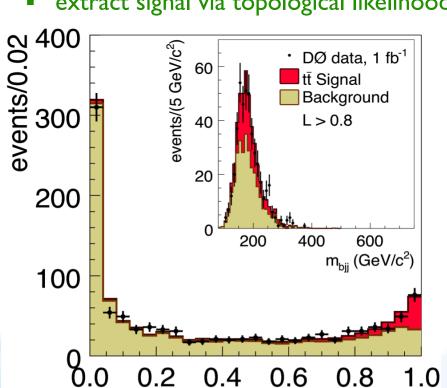

\star T. Gadfort leading publication effort of W' \to WZ search

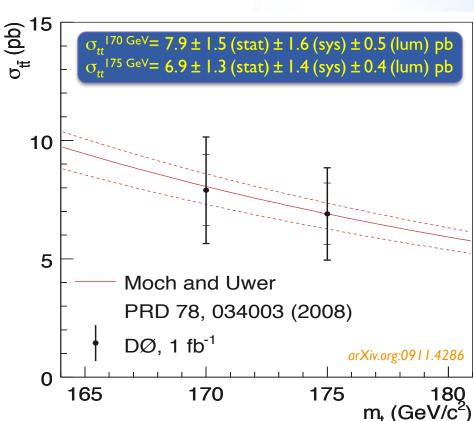

- new addition to BNL Omega group: Goldhaber Distinguished Fellow, Oct. 2009
- W' \rightarrow WZ $\rightarrow \ell\nu\ell\ell$ 4.1 fb⁻¹ search: PRL 104, 061801 (2010)
- W' \rightarrow WZ \rightarrow jj $\ell\ell$ and $\ell\nu$ jj 5.4 fb⁻¹ analysis: in Editorial Board review
 - working in collaboration with Kansas State and Columbia U.

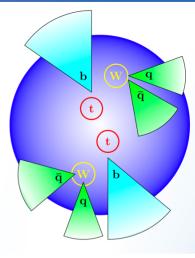
Search for resonance in reconstructed W' transverse mass spectrum

- 9 data events consistent with predicted backgrounds
- 95% C.L. limits on $\sigma \times Br(W' \rightarrow WZ)$
 - within SSM, exclude $188 < M_{W'} < 520 \text{ GeV}$
 - first limit to-date on $W' \rightarrow WZ$ production

Top Cross Section



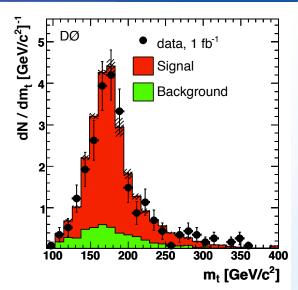

tt production in all-hadronic channel


- M. Begel led effort
- 1.0 fb⁻¹ publication submitted to PRD

Challenging signal-to-background

- six-jet background sample taken from data (S:B of 1:1300)
- signal enhanced by requiring two b-tagged jets (S:B of 1:50)
- suppress background by requiring four high- p_{τ} jets (S:B of 1:7)
- extract signal via topological likelihood

pQCD: Top Cross Section with p_T

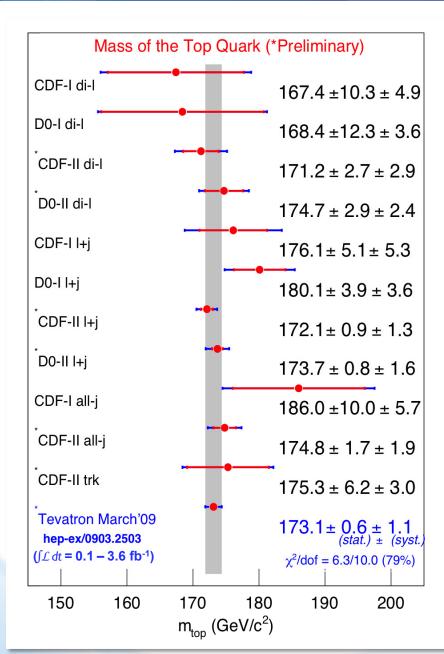


Measurements of differential cross section in tt system

- important test of pQCD for heavy quark production
- can constrain potential physics beyond standard model

❖ 1.0 fb⁻¹ publication led by M. Begel: submitted to PLB in Jan. 2010

- data sample and selections based on inclusive $t\bar{t} \rightarrow \ell$ +jets cross section measurement
- uses constrained kinematic fit developed by S. Snyder to assign ℓ and jets with $t\bar{t}$ -pairs
- * compare shape of measured differential cross section ($I/\sigma d\sigma/dp_T$) with expectation from NLO pQCD
 - also compare with approximate NNLO
 pQCD calculation and several event generator
 - Dawson (BNL) contributed to NLO pQCD
- all calculations currently reproduce the measured shape in data



Top Quark Mass

Editorial Board

- strong contribution from BNL physicists in reviewing precision measurements of top mass at DØ
- S. Protopopescu, S. Snyder, and M-A. Pleier also focusing on top physics at ATLAS
- Measurements of m_{top} from different decay channels and using different methods yield consistent results
- Single experiment's top quark mass precision reaching I GeV
 - efforts on reducing systematic uncertainties
- New results expected this Summer... for ICHEP 2010

 m_{top} (Tevatron) = 173.1 ± 0.6 (stat) ± 1.1 (sys) GeV

Closing Summary - Past & Present

Tevatron and DØ detector performing well

expect ~ I0 (I2) fb⁻¹ of Tevatron delivered data by end-FYI0 (FYII)

* BNL service contributions and expertise in

- preshower detector maintenance and object identification
- τ -ID algorithm and reconstruction
- software and infrastructure support

Strong focus on Higgs, W', and top physics analyses at DØ

- convening BSM Higgs physics group
- search for MSSM Higgs in $\tau\tau$ final states
- leading publication effort of W' search
- top quark cross section and mass measurements

BNL collaborators continue to be well-situated to apply the expertise gained from DØ in areas including hardware, software, and physics analysis to our efforts on ATLAS

Closing Summary – Future

Maintaining expertise on DØ while transition to ATLAS continues...

FYII plan for DØ effort includes

- complete publication of MSSM Higgs search with
 5.3 fb⁻¹ data
 - provide support for 7-9 fb⁻¹ MSSM $h \rightarrow \tau\tau$ search
- continue necessary expert-level roles and software support for DØ operations
- membership in Editorial Boards
 - Top mass
 - NP and low-mass SM Higgs to HF jets

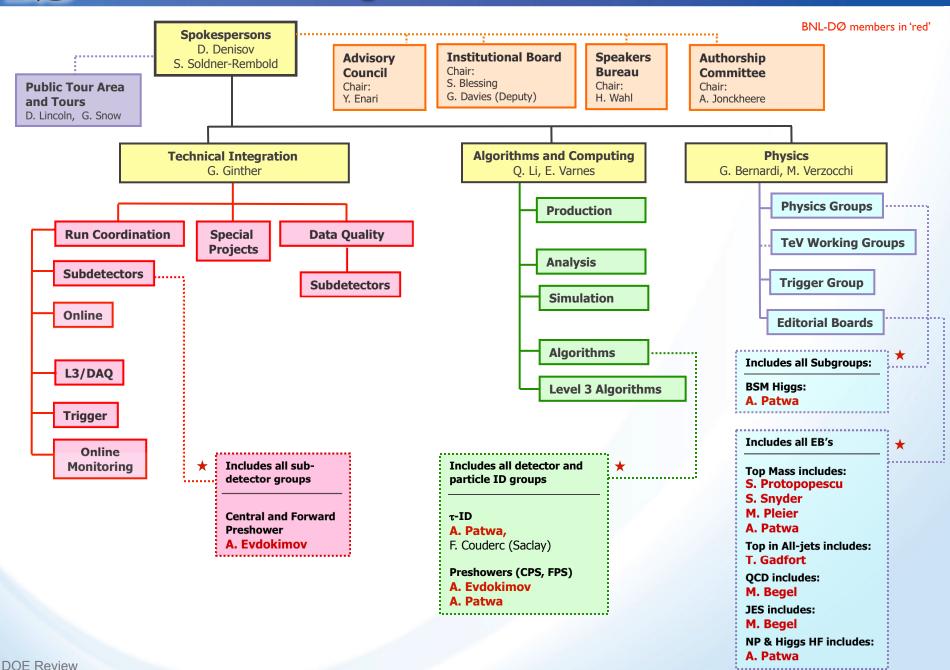
Fiscal Year	FTE on DØ (core program)
2007	2.7
2008	2.0
2009	1.5
2010	1.5
2011	0.7
2012 (?)	0.3

Projected FYII BNL-DØ members

- A. Patwa (60%), S. Snyder (10%), T. Gadfort (0%), M. Begel (0%),
 M-A. Pleier (0%), S. Protopopescu (0%), K.Yip (20%, not in core program)
 - 0.7 FTE in core program (0.9 FTE total)
 - core program primarily aimed to focus on analyzing ATLAS data while completing analysis and providing needed commitments on DØ
- A. Evdokimov: BNL guest appointment
 - BNL support (25%; same level as FY10) on CPS/FPS maintenance and its object-ID

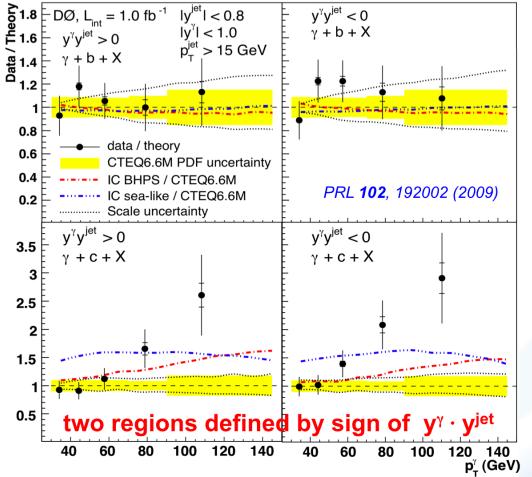
♦ If FY12 Tevatron run

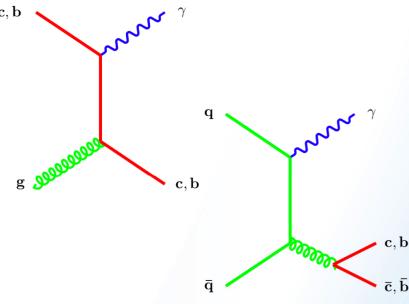
 0.3 FTE (Patwa, Snyder) in core program driven by BSM Higgs searches and software support for DØ operations



Reference Slides

DØ Organization and BNL


QCD: $\gamma + c/b$ Production



Heavy-flavor content of proton can be probed in γ+jet events where the jets are flavor tagged

* M. Begel initiated analysis

 based upon earlier inclusive photon and γ+jet measurements

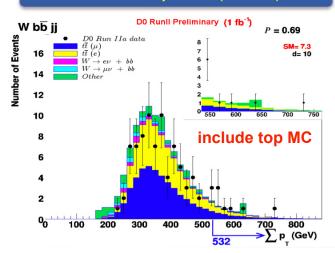
- NLO perturbative QCD (pQCD) agrees with γ+b jet measurements, but γ+c jet data exceeds expectations at high p_T
- ❖ Published I.0 fb⁻¹ result
 - PRL 102, 192002 (2009)
 - expect to shed more light on γ + c p_T distribution with full dataset

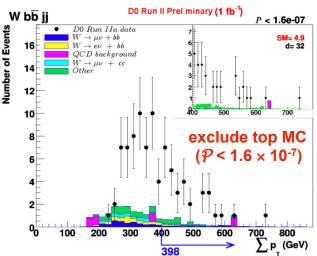
Model Independent Searches (MIS)

Focus on leptonic final states and scan for significant deviations from SM

- S. Protopopescu a primary contributor & expert to MIS for new physics
- strategy based on dividing data into 7 non-overlapping, inclusive final states
 - defined according to high- p_T objects: e, μ , τ , γ , jets, b-jet, $\not\!\!E_T$
- check 'shape' and 'number of events'
 - use KS-probabilities

Final states are input to two algorithms

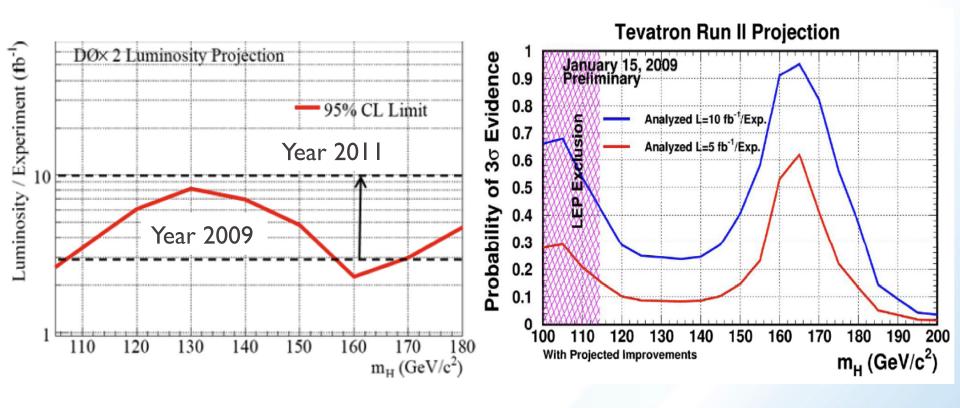

- VISTA: cycle through histograms for exclusive final states to check data vs. SM backgrounds
- Sleuth: search for excess in tails of Σp_T
 - test validity of "method" by sensitivity tests
 - e.g., with and without $t\bar{t}$ -pairs \Rightarrow "rediscover" top


Results with I fb-I

- VISTA: 4 out of 180 exclusive final states yield statistically significant (~3σ) discrepancy
 - all point to known modeling difficulties
- Sleuth: one discrepancy related to μ resolution model

No hints yet... expect increased sensitivity from modeling improvements and $> \times 6$ collected data

tī-Sensitivity Test (Sleuth):



SM Higgs Projections

assume CDF + DØ, and analysis improvements underway

Tevatron Expected Higgs Sensitivity: ≥ 2011 – direct exclusion from 115 to 185 GeV; or 1st evidence? Probability of 3σ evidence in 2011: > 40% probability for $m_H = 115$ GeV with L = 10 fb⁻¹